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EXECUTIVE SUMMARY 
 

The objective of the LINC project is to provide training and perform research in the 
development of network characterizations of climatic processes. In this context, the 
tasks in WP5 ``Tipping Points in the Climate System" include the development of 
network indicators of regime shifts that could be used to analyze states and predict 
evolution of the climate system close to tipping points. The first of the proposed tasks, 
which is the object of this deliverable, is a survey of the different transitions previously 
identified and characterized in networks, usually outside the framework of climate 
science.   

This deliverable provides a concise listing of network transitions with the aim of 
giving LINC researchers an idea of the type of transitions one can expect in 
networks, what are the variables or tools used for their characterization, and to 
provide citations to the relevant literature. Transitions are classified depending on its 
nature of occurring to the network (as for example on percolation processes) or on the 
network (as for example when considering synchronization of oscillators in a network). 
A distinction is also made on whether they occur when varying a parameter (as in 
standard bifurcations) or rather they occur under time evolution.  

Besides WP5, this deliverable is relevant for WP1 and WP4, since it applies to a variety 
of climatic networks and the concept of climate transitions and tipping points is tied to 
the concept of climate change and its prediction.   
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1 Introduction
Regime transitions or shifts in the climate system are known to have occurred in the
past. We show in Fig. 1 some examples surveyed by Dakos et al. (2008). They are
abrupt changes in the state of the atmosphere and/or the ocean which impose important
threads to biological organisms habiting the Earth. Methodologies to detect regime shifts
in past time series have been developed, both in the climatic context and beyond. They
usually consider the time evolution of local quantities (a proxy for temperature, and dust
amount in sediments, for the examples in the figure) and search for statistical evidence of
break points. Or instead researchers use classical indicators of temporal slowing down or
enhanced fluctuations (Scheffer et al., 2012).

Figure 1: Two examples of abrupt transitions in paleoclimatic time series. Left: the end of the
greenhouse state of the Earth occurred 34 millions of years ago, as shown by the abrupt increase
of carbonate in sediments. Right: a more recent regime shift was the desertification of Northern
Africa 5000–6000 years ago. Both plots from Dakos et al. (2008).

The core of the LINC project is the development of network characterizations of cli-
matic processes that would take into account in a more holistic way available information.
Instead of focusing on individual time series of temperature, precipitation, etc. the focus
is shifted towards the relationships of these quantities among different places in the globe,
the climate networks. We believe that the sensitivity of such approaches will be higher
than of the classical ones. In this context, the tasks in WP5 “Tipping Points in the Climate
System” include the development of network indicators of regime shifts that could be used
to analyze states and predict evolution of the climate system. The first of the proposed
tasks, which is the object of this deliverable, is a survey of the different transitions already
identified in networks, usually in context different from climate research. The aim is to
produce a concise listing that can give LINC researchers an idea of the type of transitions
one can expect in networks, what are the variables or tools used for their characterization,
and to provide pointers to the relevant literature.

In the following we describe a number of transition processes in networks. The num-
ber of instances of these phenomena reported in the literature is huge. Here we only
mention those that can have some relevance in the study of climate networks, either be-
cause that kind of transition is likely to occur under climatic dynamics, or because this
type of transition can occur in the dynamic variables that may be artificially introduced in
the network to better elucidate its structure and topological properties (see Sect. 2).
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For each type of transition we briefly define it and show the variables that have been
used in its characterization. By no means we pretend to give a detailed description, de-
scribe the available theory, or summarize the main results. The only objective of this
document is to give the reader an overview of the different transitions that may be en-
countered in the study of networks, so that they can be recognized if encountered in the
study of climatic networks.

We finally mention here that most of the climatic networks considered so far are cor-
relation networks. They are highly clustered and weighted. Also flow networks have bee
built. They are, in addition to clustered and weighted, directed. These are quite difficult
types of network and are never the first to be studied from the mathematical point of view
when a new transition is discovered or introduced. This should be taken into account be-
fore comparing results available in the literature with the climate networks which are the
subject of the LINC project.

2 Types of transition processes in networks
There is a large variety of different phenomena that could be considered in a way or an-
other to be a transition. Although in the deliverable title the expression ‘phase transition’
is used, restriction to those will leave out many phenomena of interest in climate research.
We consider a broader class of processes that can be of the following types:

The first mathematical concept that is associated to the idea of regime transition is
that of bifurcation. A bifurcation is a qualitative change in the nature of the solutions of
a dynamical system when a parameter is changed. Tipping point is the name given to the
parameter value at which the relevant change occurs. The solutions involved in the change
may be simple fixed points or more complicated regimes such as oscillations or chaotic
dynamics. A phase transition is the technical name given to the analogous of bifurcations
when occurring in infinitely large systems under noise. The framework of bifurcations
is without doubt the more comfortable from the mathematical point of view since the
different types of bifurcations have been carefully classified, and their consequences and
warning signals thoroughly discussed. See Thompson and Sieber (2011) for a review
relevant in the climate context.

But despite its mathematical convenience, standard bifurcations are not the objects
commonly encountered when studying regime shifts in climate. One usually deals with
observed time series, and the aim is to find indications of a qualitative change in time.
There is a link between the two concepts: if there is a parameter in the system (such as
an astronomical forcing, input of greenhouse gases into the atmosphere, melting water
flowing from glaciers towards the sea, ...) changing very slowly in time then a qualitative
change will occur in time when the changing parameter crosses the bifurcation or tipping
time. But note that climate adaptation time scales should be faster than the rate of parame-
ter change for this to occur cleanly. In many climatic processes this time-scale separation
is not present, or occurs in the opposite direction.

There are cases however in which the bifurcation approach can be of use even if the
climatic system under study is not undergoing it. It can be used as an analytical tool
to investigate the structure of the network of interest. For example in climate research
many networks are being build from correlations. Although these networks were not
experiencing percolation processes (see sect. 3.1) in time, one may remove links with
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small values of correlation to identify the most correlated core, and continue the removal
process until percolation as a tool to further explore the network structure.

On the other hand abrupt jumps unrelated to bifurcations can occur in dynamical sys-
tems. For example, in a bistable system forced by noise (as many models turn out to
represent some climatic subsystems such as the Meridional Atlantic Circulation or the
solar radiation - albedo feedback leading to snowball Earth states), jumps between the
two stable states can occur stochastically because of the noise forcing, despite all pa-
rameters being kept fixed. This is an example of dynamic state which is composed by
relatively long-lived subattractors, that the system can visit sequentially, giving rise to
non-bifurcation-related regime shifts. Most instances of community dynamics discussed
in Sect. 6 are probably of this type.

All the above applies to general dynamical systems, independently of being related
to networks or not. When dealing specifically with climate networks we can distinguish
two different types of transition phenomena: In the first one, the topology of the network
changes (in time or by changing a parameter, as discussed above). In the second case,
which happens when there are dynamical variables evolving at the nodes of the network
(as for example temperature, pressure, etc. evolving dynamically at each node of a climate
network), we can have transitions in the dynamics of these variables. These transitions
will be greatly influenced by the nature of the variable’s interactions, which are described
by the network links, but they are not transitions of the network itself. Thus, we can talk
of transitions of the network, and transitions on the network as two conceptually different
cases. Finally we can have an hybrid case in which both the topology of the network
and the dynamics on it experience simultaneous regime shifts. This happens in case of
coevolving nodes and links . Also, as with the case of percolation mentioned above,
one can consider a dynamic process running on top of a network, even if the process is
unrelated to the climatic process represented in the network, if one wants to use it as a
tool to explore network properties. For example one can define an unphysical oscillatory
dynamics on a climate network since the synchronization properties and transitions of this
system give information on the community structure and its transitions in the underling
network.

In the rest of this document we will list and briefly describe different types of transi-
tions reported in the literature. The next to chapters deal with transitions of the network
and transitions of dynamical processes on the network. We treat in these sections both
cases of transitions in time and transitions arising from bifurcations. Sects. 5 and ?? deal
with situations in which both topology and dynamics on it become entangled.

3 Fragmentation-type transitions

3.1 Percolation
Percolation theory has a long history (Stauffer and Aharony, 1992) and it provides ar-
guably the simplest example of a phase transition. It is a purely of geometric nature.

The basic concept is that of the giant component. It is defined in an infinite network
as a set of mutually reachable vertices and their links, which happens to contain a finite
fraction of the vertices of the infinite network. In more practical terms, one would have
to identify the giant component by considering a finite network, computing the size of
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the largest connected component, and identifying if it diverges in size when the number
of nodes grows. But this is not always feasible, specially if one deals with observed
networks. In this case one identifies the largest component and decides whereas its size is
of the order of the full network.

Figure 2: Percolation in a random Erdös-Rényi graph by varying the mean degree z. Solid line
is the fraction of nodes in the giant component. Solid line is the mean cluster size excluding the
giant component when it exists. From Newman (2003).

Figure 2 shows the behavior of the fraction S of nodes in the giant component for a
random Erdös-Rényi network as a function of its mean degree z. It is seen that a giant
component begins to exist when z is increased above z = 1. This is the percolation tran-
sition. The figure shows also that the distribution of the non-giant clusters also displays
a singularity, a divergence, at the percolation point. The existence of a maximum in this
second quantity, the mean component size excluding the giant, or also of a maximum in
the size of the second largest cluster, are taken as identifiers of a percolation transition,
and locators of the percolation point.

The Erdös-Rényi graph displays a percolation transition naturally as a function of its
defining parameter. More in general one may try to induce a percolation transition in an
arbitrary graph as follows: Let us start with a network containing a giant component, and
eliminate randomly a fraction f = 1 − p of the links (this is bond percolation; if one
eliminate nodes, it is site percolation). One recalculates then the giant component and
monitors it (or the size of the second cluster) as f increases or p decreases. A behavior
such as the one in Fig. 2 with z replaced by p would delate the presence of a percolation
transition.

3.2 Cascading processes
Here one considers also the situation of removing a fraction of the existing nodes in a
network. In fact cascading processes in their simple form consider the removal of a single
node (or link). But then, based in the new configuration of the network, a rule is given
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that leads to the removal of new nodes, and so on until the rule no longer request the
elimination of further nodes and the cascade stops. In this case the order parameter G
one monitors to identify a transition is the relative size of the giant component when the
cascade stops with respect to the initial size (or equivalently, the size of the cascade or
avalanche). The simplest rules for this cascading processes are inspired by congestion
processes in communications or power systems: For example Motter and Lai (2002) con-
siders each node to have a given capacity of communication, and also a load which is
determined by its betweenness in the graph. After each event in the cascade loads are
recalculated and the rule states that all nodes with load exceeding its capacity fail and are
eliminated. Figure 3 shows the final relative size of the giant component, G, for different
types of networks (and of removal process) as a function of a parameter α in their model
that controls the assigned capacities: at α = 1 all nodes are initially at their limiting load,
whereas they are less stressed for increasing α.

Figure 3: Relative size of the final largest connected component in the model of cascading failures
of Motter and Lai (2002), as a function of a parameter α characterizing the initial tolerance of the
nodes (ratio of the capacity to their initial load). Main panel, random graphs with degree k = 3.
Inset, scale-free networks with ⟨k⟩ = 3. Squares, circles and asterisks indicate that node removal
is initiated at random, removing the node with largest load, or with the largest degree, respectively.
From Motter and Lai (2002).

4 Dynamical processes on networks

4.1 Propagation and congestion
We have already seen in Section 3.2 examples of processes involving propagation and
congestion, although formulated in purely geometric terms. If the model contains ingre-
dients beyond topology, this should be taken into account when identifying the relevant
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order parameter to monitor when searching for transitions. We pose as example a model
of Echenique et al. (2005). The process occurring in the network is packet passing, as
in the Internet. The routing protocol by which a node decides to which neighbor to send
a packet seeks to minimize the travel distance, but with a correction proportional to the
congestion of the receiving node. In terms of the parameter h characterizing the impor-
tance of the distance criterium with respect to the congestion one, Echenique et al. (2005)
computes and order parameter ρ which is the fraction of undelivered packets in the net-
work at long times. The order parameter ρ reveals a jamming transition when the rate
of packet input p increases. The transition is continuous for the standard internet proto-
col that takes into account only distance (h = 1) but it is discontinuous as soon as the
congestion correction is introduced.

Figure 4: Order parameter ρ characterizing undelivered packets as a function of packet input rate
p in the routing model of Echenique et al. (2005). ρ > 0 indicates a jammed phase, which appears
discontinuously when node congestion is taken into account in the routing protocol (h < 1). From
Echenique et al. (2005).

4.2 Epidemic spreading
Although the epidemic type of propagation is not expected to occur for the climatic vari-
ables in climatic networks, other types of propagation (waves, ...) may occur, and in
addition the researcher may introduce such dynamics in some of the climate networks to
better probe their structure. We will see that the insight one can get is similar to the one
provided by percolation phenomena.

The most important of the basic models of epidemics are the so-called SIS and SIR
models (Nâsell, 2002). S denotes susceptible to infection, I infective, and R recovered (or
removed by death). Nodes in the networks are individuals which are in the state S, I or
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R, and infections spread from vertex to vertex through edges. The SIS model describes
infections without immunity, where recovered individuals are susceptible. In the SIR
model, recovered individuals are immune forever, and do not infect.

The basic parameter in the epidemic models is the ratio λ between infection rate and
recovery rate. The description of the different dynamic regimes is done in terms of the
asymptotic prevalence which is the number of infected individuals at long times. When
λ < λc the prevalence is zero, meaning that infection dies out. In the SIR model also the
asymptotic number of recovered individuals is zero. But when a epidemic threshold λc

is exceeded, we have a nonzero prevalence (and growing with λ) in SIS and a nonzero
number of recovered in the SIR model. The transition shares properties with percolation.
More precisely the SIR model is equivalent (Grassberger, 1983) to directed percolation.
Regarding the final state, it is nearly equivalent to a bond percolation problem in which
p = 1− exp(λ).

The analogy with percolation guarantees that for scale-free infinite networks the epi-
demic threshold is λc = 0: any infectivity leads to epidemic propagation (Pastor-Satorras
and Vespignani, 2001).

5 Transitions associated to community structure

5.1 Spins and the Potts model
There is a large literature describing spin statistical mechanics models on networks. See
a review in Dorogovtsev et al. (2008). Topology of the network defining the interactions
greatly changes the macroscopic properties compared to the same model on a regular
lattice. Here we only mention the spin models that turn out to be related to classical
problems in graphs.

For example, the antiferromagnetic Ising model is defined as the statistical mechanics
problem of a set of N spins with states {s1, ..., sN} with si = ±1, occupying the vertices
of a network and interacting with energy

E = −J
∑

Aijsisj .

(Aij) is the adjacency matrix, the sum runs over all pairs of vertices, and J < 0. Find-
ing the (zero temperature) ground state of this model turns out to be equivalent to the
MAX-CUT problem of graph theory, namely finding the binary partition of a graph max-
imizing the number of links between the two parts. Each part is identified with the set
of spins in the same state. Equivalently this is also the problem of coloring the vertices
of a network with two colors so that no adjacent vertices have the same color. It turns
out that the last problem may have or not solution depending of the network structure.
The transition between such topologies is then equivalent to the transition between a fully
antiferromagnetic state and a frustrated spin-glass state in the spin model. Studying the
antiferromagnetic Ising model on a network is then a way to assess its degree of bipartiv-
ity.

An even richer statistical mechanics model that has been studied in networks is the
q-state Potts model (Dorogovtsev et al., 2008). Here the spins {si} can take q values, and
the interaction energy is

E = −J
∑

JijAijδsisj .
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The sum is again over all pairs, (Aij) is the graph adjacency matrix and the delta function
is one or zero depending on whether their arguments are equal or different. There is a set
of order parameters defined as

Ma =
∑
i

(q ⟨δsia⟩) /(q − 1) .

All of them are zero in the paramagnetic phase, whereas some Ma are non zero if the
corresponding phase with spins in state a becomes macroscopic. Phase transitions occur
by varying the temperature, and depending on the value of q, of (Jij) and of the network
topology (Aij), these transitions may be continuous or discontinuous.

The 2-state Potts model is clearly identical to the Ising model. The 1-state Potts model
turns out to be equivalent to the problem of bond percolation. The Potts model has also re-
markable relationships with graph-theoretic problems. For instance the antiferromagnetic
case Jij = J < 0 is related to the graph-coloring problem. Whereas planar graphs can
always be colored with 4 colors in such a way that no contiguous nodes have the same
color, the same is not generally true for more complex networks. Finding the ground
state of the antiferromagnetic q-state Potts model gives the optimal coloring partition for
q colors. Generally the perfect coloring is only achievable in networks with small-enough
degree or large enough q, so that a q-COL-UNCOL transition between colorability and
uncolorability occurs.

Perhaps the most remarkable relationship between Potts model and network theory is
its application in community detection (Danon et al., 2005; Fortunato, 2010). Reichardt
and Bornhold (2004) proposed to associate to a different community in a network each
different domain in a q-state Potts model with a modified interaction energy given by

E = −1

2

∑
⟨ij⟩

Aijδsisj +
λ

2

∑
a

na(na − 1) .

na is the number of spins in community a. Finding the ground state of such model parti-
tions the network into q communities. In fact this modified energy when λ = 1 is exactly
proportional to the network modularity, maximization of which is a standard method in
community detection (Fortunato, 2010).

The relationship of the Potts model with different strategies to find communities in
networks, and the presence of phase transitions in that model, implies that there are also
phase transitions in community detection. As a simple example we show in Fig. 5 tran-
sitions in the efficiency of a method for finding communities in network, as the degree in
the studied network changes (Nadakuditi and Newman, 2012).

5.2 Synchronization and the Laplacian matrix
Synchronization (in its simple instance of complete synchronization) is the adaptation of
several interacting dynamic units to a common trajectory. We are here interested in the
case in which the interactions are given by a network structure so that the dynamic units,
or oscillators, are the nodes of a network. Many interesting questions and problems arise
in this context. See reviews in Boccaletti et al. (2006); Dorogovtsev et al. (2008) we here
only mention its relationship with community structure and detection.

An important observation was made by Arenas et al. (2006), who showed that the
evolution at different time scales of synchronization patterns in a network with nested
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Figure 5: The number of nodes classified correctly by the spectral algorithm introduced by
Nadakuditi and Newman (2012) when changing topological characteristics of the studied set of
networks (namely some mean difference between in and out degree d = cin − cout). Phase transi-
tions to increasing errors occurs when increasing d. From Nadakuditi and Newman (2012).

communities reveals its structure. Starting with a random initial conditions for a set of
Kuramoto oscillators, highly interconnected clusters of nodes synchronize first. Then
larger and larger communities merge into the common synchronized state until complete
synchrony. These successive steps in synchronization can be understood as transitions
occurring in time.

The explanation for this behavior can be found by analyzing the linear stability of
the synchronized state. Linearization of the Kuramoto interaction leads to a diffusive
coupling in which the Laplacian matrix of the graph mediates the interaction between
nodes. For a network with adjacency matrix (Aij) the Laplacian matrix is defined as
Lij = kiδij − Aij . ki is the degree of node i. The Laplacian matrix appears also in the
master stability approach to determine stability of synchronization of oscillators under
standard diffusive-like coupling. This matrix has interesting properties and has been used
in spectral methods of graph partitioning. In particular (Lij) has an eigenvalue λ1 = 0
associated to the uniform eigenvector (several zero eigenvalues associated to eigenvectors
uniform in the different components occur for disconnected networks), and the rest of
eigenvalues 0 = λ1 ≤ λ2 ≤ ... ≤ λN are real and positive. It turns out (Arenas et al.,
2006) that the different eigenvalues give the time-scale of synchronizations of the struc-
tures characterized by the corresponding eigenvalue. The eigenvalues of the Laplacian
matrix also appear in the master stability estimation of synchronizability of networks,
which becomes larger in standard cases when λN/λ2 is smaller.

In fact the spectral properties of the Laplacian matrix were knew since long ago to
provide information on the community structure of the corresponding network. It is in the
basis of standard graph partitioning algorithms to solve the minimum cut problem: split
the network in two components minimizing the number on links between them (Newman,
2010). An approximate solution of this problem is given by the eigenvalue associated to
λ2: positive elements identify the nodes in one of the components and negative ones in
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the other.

Figure 6: Topological transition occurring when increasing the weights of connections between
two Erdös-Rényi networks with the same number of nodes. Top: the eigenvalue λ2 of the total
Laplacian matrix. Middle: scalar product of the parts of the corresponding eigenvalue that cor-
respond to the first and to the second network. Bottom: The sum of the components of each of
the two subeigenvectors. Increasing connectivity leads from a state in which the two networks are
nearly independent to another in which the system behaves as a single network. From Arenas et al.
(2006).

The spectral properties of the Laplacian have been used by Radicchi and Arenas
(2013) to find and characterize a transition between a quasi-single layer and two-layer
topology when increasing the number of links between two interconnected networks with
the same number of nodes. Figure 6 displays the different indicators used to characterize
the transition.

6 Community dynamics
We end this summary of transition types in networks by noticing that the elementary
types of changes in community structure were enumerated by Palla et al. (2007). Figure
7 displays them.

Methodologies to identify and characterize these types of topological transitions are
given for example in Aynaud et al. (2013), Mucha et al. (2010) and Peel and Clauset
(2013).
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Figure 7: Elementary transitions in community dynamics in networks. From Palla et al. (2007).
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topological scales in complex networks. Phys. Rev. Lett. 96, 114102 (2006).

Thomas Aynaud, Eric Fleury, Jean-loupa Guillaume, and Qinna Wang. Dynamics On
and Of Complex Networks, Volume 2, chapter Communities in Evolving Networks :
Definitions , Detection , and Analysis Techniques, pages 159–200 (Springer-Verlag,
Berlin, 2013).

S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.-U. Hwang. Complex networks:
Structure and dynamics. Physics Reports 424, 175–308 (2006).

Vasilis Dakos, Marten Scheffer, Egbert H van Nes, Victor Brovkin, Vladimir Petoukhov,
and Hermann Held. Slowing down as an early warning signal for abrupt climate change.
Proceedings of the National Academy of Sciences of the United States of America
105(38), 14308–14312 (2008).

Leon Danon, Albert Dı́az-Guilera, Jordi Duch, and Alex Arenas. Comparing commu-
nity structure identification. Journal of Statistical Mechanics: Theory and Experiment
2005(09), P09008 (2005).

S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes. Critical phenomena in complex
networks. Reviews of Modern Physics. 80, 1275–1335 (2008).
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